Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Transfusion ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38516758

RESUMEN

BACKGROUND: Immunoglobulin (IG) therapy is widely used to treat primary and secondary immune deficiencies and as immunomodulatory agent for various disorders. There is great concern that shortages of IG may rise, potentially affecting medical treatment options. STUDY DESIGN AND METHODS: An international survey was developed to study how intravenous immunoglobulins (IVIGs) are used and managed within hospitals in case of shortages. Study data were collected and managed using REDCap electronic data capture tools hosted by the Biomedical Excellence for Safer Transfusion (BEST) Collaborative. The survey was directed to hospital pharmacists and blood bank transfusion professionals and disseminated through members of the BEST Collaborative network. RESULTS: Survey respondents from institutions in the USA, Canada, Europe, Japan, and Australia (n = 13) confirmed that the primary specialties utilizing IG are neurology, hematology, and immunology. More than 60% of respondents reported IG supply shortages, but mitigation strategies were not well developed. DISCUSSION: As IG is the leading driver in plasma demand, more studies are needed to understand current and future demand for IG from the clinical perspective. Necessity lies in establishing clinical guidance to address shortages.

3.
JAMA ; 330(19): 1892-1902, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37824153

RESUMEN

Importance: Red blood cell transfusion is a common medical intervention with benefits and harms. Objective: To provide recommendations for use of red blood cell transfusion in adults and children. Evidence Review: Standards for trustworthy guidelines were followed, including using Grading of Recommendations Assessment, Development and Evaluation methods, managing conflicts of interest, and making values and preferences explicit. Evidence from systematic reviews of randomized controlled trials was reviewed. Findings: For adults, 45 randomized controlled trials with 20 599 participants compared restrictive hemoglobin-based transfusion thresholds, typically 7 to 8 g/dL, with liberal transfusion thresholds of 9 to 10 g/dL. For pediatric patients, 7 randomized controlled trials with 2730 participants compared a variety of restrictive and liberal transfusion thresholds. For most patient populations, results provided moderate quality evidence that restrictive transfusion thresholds did not adversely affect patient-important outcomes. Recommendation 1: for hospitalized adult patients who are hemodynamically stable, the international panel recommends a restrictive transfusion strategy considering transfusion when the hemoglobin concentration is less than 7 g/dL (strong recommendation, moderate certainty evidence). In accordance with the restrictive strategy threshold used in most trials, clinicians may choose a threshold of 7.5 g/dL for patients undergoing cardiac surgery and 8 g/dL for those undergoing orthopedic surgery or those with preexisting cardiovascular disease. Recommendation 2: for hospitalized adult patients with hematologic and oncologic disorders, the panel suggests a restrictive transfusion strategy considering transfusion when the hemoglobin concentration is less than 7 g/dL (conditional recommendations, low certainty evidence). Recommendation 3: for critically ill children and those at risk of critical illness who are hemodynamically stable and without a hemoglobinopathy, cyanotic cardiac condition, or severe hypoxemia, the international panel recommends a restrictive transfusion strategy considering transfusion when the hemoglobin concentration is less than 7 g/dL (strong recommendation, moderate certainty evidence). Recommendation 4: for hemodynamically stable children with congenital heart disease, the international panel suggests a transfusion threshold that is based on the cardiac abnormality and stage of surgical repair: 7 g/dL (biventricular repair), 9 g/dL (single-ventricle palliation), or 7 to 9 g/dL (uncorrected congenital heart disease) (conditional recommendation, low certainty evidence). Conclusions and Relevance: It is good practice to consider overall clinical context and alternative therapies to transfusion when making transfusion decisions about an individual patient.


Asunto(s)
Transfusión de Eritrocitos , Hemoglobinas , Adulto , Niño , Humanos , Enfermedades Cardiovasculares , Toma de Decisiones , Transfusión de Eritrocitos/normas , Cardiopatías Congénitas , Hemoglobinas/análisis , Ensayos Clínicos Controlados Aleatorios como Asunto
4.
Vox Sang ; 118(9): 798-806, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37463772

RESUMEN

At the symposium organized by the International Plasma and Fractionation Association and European Blood Alliance, experts presented their views and experiences showing that the public sector and its blood establishments may strengthen the collection and increase the supply of plasma using the right strategies in plasma donor recruitment, retention and protection, scaling-up collection by increasing the number of donors within improved/new infrastructure, supportive funding, policies and legislation as well as harmonization of clinical guidelines and the collaboration of all stakeholders. Such approaches should contribute to increased plasma collection in Europe to meet patients' needs for plasma-derived medicinal products, notably immunoglobulins and avoid shortages. Overall, presentations and discussions confirmed that European non-profit transfusion institutions are committed to increasing the collection of plasma for fractionation from unpaid donors through dedicated programmes as well as novel strategies and research.


Asunto(s)
Transfusión Sanguínea , Plasma , Humanos , Europa (Continente) , Plasma/química , Inmunoglobulinas/análisis
5.
Expert Rev Hematol ; 16(7): 501-514, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37129864

RESUMEN

INTRODUCTION: The COVID-19 pandemic has resulted in a historic public health crisis with widespread social and economic ramifications. The pandemic has also affected the blood supply, resulting in unprecedented and sustained blood shortages. AREAS COVERED: This review describes the challenges of maintaining a safe and sufficient blood supply in the wake of natural disasters, humanitarian emergencies, and pandemics. The challenges, which are accentuated in low- and high-income countries, span the impact on human capacity (affecting blood donors and blood collections personnel alike), disruption to supply chains, and economic sustainability. COVID-19 imparted lessons on how to offset these challenges, which may be applied to future pandemics and public health crises. EXPERT OPINION: Pandemic emergency preparedness plans should be implemented or revised by blood centers and hospitals to lessen the impact to the blood supply. Comprehensive planning should address the timely assessment of risk to the blood supply, rapid donor recruitment, and communication of need, measures to preserve safety for donors and operational staff, careful blood management, and resource sharing.


Asunto(s)
COVID-19 , Desastres Naturales , Humanos , COVID-19/epidemiología , Pandemias , Urgencias Médicas
6.
Cochrane Database Syst Rev ; 5: CD013600, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37162745

RESUMEN

BACKGROUND: Convalescent plasma may reduce mortality in patients with viral respiratory diseases, and is being investigated as a potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding benefits and risks of this intervention is required. OBJECTIVES: To assess the effectiveness and safety of convalescent plasma transfusion in the treatment of people with COVID-19; and to maintain the currency of the evidence using a living systematic review approach. SEARCH METHODS: To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Global literature on coronavirus disease Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, and the Epistemonikos COVID-19 L*OVE Platform. We searched monthly until 03 March 2022. SELECTION CRITERIA: We included randomised controlled trials (RCTs) evaluating convalescent plasma for COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies evaluating standard immunoglobulin. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. To assess bias in included studies we used RoB 2. We used the GRADE approach to rate the certainty of evidence for the following outcomes: all-cause mortality at up to day 28, worsening and improvement of clinical status (for individuals with moderate to severe disease), hospital admission or death, COVID-19 symptoms resolution (for individuals with mild disease), quality of life, grade 3 or 4 adverse events, and serious adverse events. MAIN RESULTS: In this fourth review update version, we included 33 RCTs with 24,861 participants, of whom 11,432 received convalescent plasma. Of these, nine studies are single-centre studies and 24 are multi-centre studies. Fourteen studies took place in America, eight in Europe, three in South-East Asia, two in Africa, two in western Pacific and three in eastern Mediterranean regions and one in multiple regions. We identified a further 49 ongoing studies evaluating convalescent plasma, and 33 studies reporting as being completed. Individuals with a confirmed diagnosis of COVID-19 and moderate to severe disease 29 RCTs investigated the use of convalescent plasma for 22,728 participants with moderate to severe disease. 23 RCTs with 22,020 participants compared convalescent plasma to placebo or standard care alone, five compared to standard plasma and one compared to human immunoglobulin. We evaluate subgroups on detection of antibodies detection, symptom onset, country income groups and several co-morbidities in the full text. Convalescent plasma versus placebo or standard care alone Convalescent plasma does not reduce all-cause mortality at up to day 28 (risk ratio (RR) 0.98, 95% confidence interval (CI) 0.92 to 1.03; 220 per 1000; 21 RCTs, 19,021 participants; high-certainty evidence). It has little to no impact on need for invasive mechanical ventilation, or death (RR 1.03, 95% CI 0.97 to 1.11; 296 per 1000; 6 RCTs, 14,477 participants; high-certainty evidence) and has no impact on whether participants are discharged from hospital (RR 1.00, 95% CI 0.97 to 1.02; 665 per 1000; 6 RCTs, 12,721 participants; high-certainty evidence). Convalescent plasma may have little to no impact on quality of life (MD 1.00, 95% CI -2.14 to 4.14; 1 RCT, 483 participants; low-certainty evidence). Convalescent plasma may have little to no impact on the risk of grades 3 and 4 adverse events (RR 1.17, 95% CI 0.96 to 1.42; 212 per 1000; 6 RCTs, 2392 participants; low-certainty evidence). It has probably little to no effect on the risk of serious adverse events (RR 1.14, 95% CI 0.91 to 1.44; 135 per 1000; 6 RCTs, 3901 participants; moderate-certainty evidence). Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces or increases all-cause mortality at up to day 28 (RR 0.73, 95% CI 0.45 to 1.19; 129 per 1000; 4 RCTs, 484 participants; very low-certainty evidence). We are uncertain whether convalescent plasma reduces or increases the need for invasive mechanical ventilation, or death (RR 5.59, 95% CI 0.29 to 108.38; 311 per 1000; 1 study, 34 participants; very low-certainty evidence) and whether it reduces or increases the risk of serious adverse events (RR 0.80, 95% CI 0.55 to 1.15; 236 per 1000; 3 RCTs, 327 participants; very low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus human immunoglobulin Convalescent plasma may have little to no effect on all-cause mortality at up to day 28 (RR 1.07, 95% CI 0.76 to 1.50; 464 per 1000; 1 study, 190 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Individuals with a confirmed diagnosis of SARS-CoV-2 infection and mild disease We identified two RCTs reporting on 536 participants, comparing convalescent plasma to placebo or standard care alone, and two RCTs reporting on 1597 participants with mild disease, comparing convalescent plasma to standard plasma. Convalescent plasma versus placebo or standard care alone We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (odds ratio (OR) 0.36, 95% CI 0.09 to 1.46; 8 per 1000; 2 RCTs, 536 participants; very low-certainty evidence). It may have little to no effect on admission to hospital or death within 28 days (RR 1.05, 95% CI 0.60 to 1.84; 117 per 1000; 1 RCT, 376 participants; low-certainty evidence), on time to COVID-19 symptom resolution (hazard ratio (HR) 1.05, 95% CI 0.85 to 1.30; 483 per 1000; 1 RCT, 376 participants; low-certainty evidence), on the risk of grades 3 and 4 adverse events (RR 1.29, 95% CI 0.75 to 2.19; 144 per 1000; 1 RCT, 376 participants; low-certainty evidence) and the risk of serious adverse events (RR 1.14, 95% CI 0.66 to 1.94; 133 per 1000; 1 RCT, 376 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (OR 0.30, 95% CI 0.05 to 1.75; 2 per 1000; 2 RCTs, 1597 participants; very low-certainty evidence). It probably reduces admission to hospital or death within 28 days (RR 0.49, 95% CI 0.31 to 0.75; 36 per 1000; 2 RCTs, 1595 participants; moderate-certainty evidence). Convalescent plasma may have little to no effect on initial symptom resolution at up to day 28 (RR 1.12, 95% CI 0.98 to 1.27; 1 RCT, 416 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. This is a living systematic review. We search monthly for new evidence and update the review when we identify relevant new evidence. AUTHORS' CONCLUSIONS: For the comparison of convalescent plasma versus placebo or standard care alone, our certainty in the evidence that convalescent plasma for individuals with moderate to severe disease does not reduce mortality and has little to no impact on clinical improvement or worsening is high. It probably has little to no effect on SAEs. For individuals with mild disease, we have very-low to low certainty evidence for most primary outcomes and moderate certainty for hospital admission or death. There are 49 ongoing studies, and 33 studies reported as complete in a trials registry. Publication of ongoing studies might resolve some of the uncertainties around convalescent plasma therapy for people with asymptomatic or mild disease.


Asunto(s)
COVID-19 , Virosis , Humanos , COVID-19/terapia , SARS-CoV-2 , Sueroterapia para COVID-19 , Inmunoglobulinas
7.
Transfus Clin Biol ; 30(3): 355-359, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36965848

RESUMEN

An overview of Patient Blood Management (PBM), with its main scope to preserve the patient's own blood to improve the patient's outcome, is presented here, including the research gaps that needs to be addressed, particularly in the pediatric age group. Next, novel techniques to analyse PBM data and the challenges and strategies of PBM implementation will also be discussed.


Asunto(s)
Anemia , Transfusión Sanguínea , Niño , Humanos , Adulto , Transfusión Sanguínea/métodos
8.
Cochrane Database Syst Rev ; 2: CD013600, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36734509

RESUMEN

BACKGROUND: Convalescent plasma may reduce mortality in patients with viral respiratory diseases, and is being investigated as a potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding benefits and risks of this intervention is required. OBJECTIVES: To assess the effectiveness and safety of convalescent plasma transfusion in the treatment of people with COVID-19; and to maintain the currency of the evidence using a living systematic review approach. SEARCH METHODS: To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Global literature on coronavirus disease Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, and the Epistemonikos COVID-19 L*OVE Platform. We searched monthly until 03 March 2022. SELECTION CRITERIA: We included randomised controlled trials (RCTs) evaluating convalescent plasma for COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies evaluating standard immunoglobulin. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. To assess bias in included studies we used RoB 2. We used the GRADE approach to rate the certainty of evidence for the following outcomes: all-cause mortality at up to day 28, worsening and improvement of clinical status (for individuals with moderate to severe disease), hospital admission or death, COVID-19 symptoms resolution (for individuals with mild disease), quality of life, grade 3 or 4 adverse events, and serious adverse events. MAIN RESULTS: In this fourth review update version, we included 33 RCTs with 24,861 participants, of whom 11,432 received convalescent plasma. Of these, nine studies are single-centre studies and 24 are multi-centre studies. Fourteen studies took place in America, eight in Europe, three in South-East Asia, two in Africa, two in western Pacific and three in eastern Mediterranean regions and one in multiple regions. We identified a further 49 ongoing studies evaluating convalescent plasma, and 33 studies reporting as being completed. Individuals with a confirmed diagnosis of COVID-19 and moderate to severe disease 29 RCTs investigated the use of convalescent plasma for 22,728 participants with moderate to severe disease. 23 RCTs with 22,020 participants compared convalescent plasma to placebo or standard care alone, five compared to standard plasma and one compared to human immunoglobulin. We evaluate subgroups on detection of antibodies detection, symptom onset, country income groups and several co-morbidities in the full text. Convalescent plasma versus placebo or standard care alone Convalescent plasma does not reduce all-cause mortality at up to day 28 (risk ratio (RR) 0.98, 95% confidence interval (CI) 0.92 to 1.03; 220 per 1000; 21 RCTs, 19,021 participants; high-certainty evidence). It has little to no impact on need for invasive mechanical ventilation, or death (RR 1.03, 95% CI 0.97 to 1.11; 296 per 1000; 6 RCTs, 14,477 participants; high-certainty evidence) and has no impact on whether participants are discharged from hospital (RR 1.00, 95% CI 0.97 to 1.02; 665 per 1000; 6 RCTs, 12,721 participants; high-certainty evidence). Convalescent plasma may have little to no impact on quality of life (MD 1.00, 95% CI -2.14 to 4.14; 1 RCT, 483 participants; low-certainty evidence). Convalescent plasma may have little to no impact on the risk of grades 3 and 4 adverse events (RR 1.17, 95% CI 0.96 to 1.42; 212 per 1000; 6 RCTs, 2392 participants; low-certainty evidence). It has probably little to no effect on the risk of serious adverse events (RR 1.14, 95% CI 0.91 to 1.44; 135 per 1000; 6 RCTs, 3901 participants; moderate-certainty evidence). Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces or increases all-cause mortality at up to day 28 (RR 0.73, 95% CI 0.45 to 1.19; 129 per 1000; 4 RCTs, 484 participants; very low-certainty evidence). We are uncertain whether convalescent plasma reduces or increases the need for invasive mechanical ventilation, or death (RR 5.59, 95% CI 0.29 to 108.38; 311 per 1000; 1 study, 34 participants; very low-certainty evidence) and whether it reduces or increases the risk of serious adverse events (RR 0.80, 95% CI 0.55 to 1.15; 236 per 1000; 3 RCTs, 327 participants; very low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus human immunoglobulin Convalescent plasma may have little to no effect on all-cause mortality at up to day 28 (RR 1.07, 95% CI 0.76 to 1.50; 464 per 1000; 1 study, 190 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Individuals with a confirmed diagnosis of SARS-CoV-2 infection and mild disease We identified two RCTs reporting on 536 participants, comparing convalescent plasma to placebo or standard care alone, and two RCTs reporting on 1597 participants with mild disease, comparing convalescent plasma to standard plasma. Convalescent plasma versus placebo or standard care alone We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (odds ratio (OR) 0.36, 95% CI 0.09 to 1.46; 8 per 1000; 2 RCTs, 536 participants; very low-certainty evidence). It may have little to no effect on admission to hospital or death within 28 days (RR 1.05, 95% CI 0.60 to 1.84; 117 per 1000; 1 RCT, 376 participants; low-certainty evidence), on time to COVID-19 symptom resolution (hazard ratio (HR) 1.05, 95% CI 0.85 to 1.30; 483 per 1000; 1 RCT, 376 participants; low-certainty evidence), on the risk of grades 3 and 4 adverse events (RR 1.29, 95% CI 0.75 to 2.19; 144 per 1000; 1 RCT, 376 participants; low-certainty evidence) and the risk of serious adverse events (RR 1.14, 95% CI 0.66 to 1.94; 133 per 1000; 1 RCT, 376 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (OR 0.30, 95% CI 0.05 to 1.75; 2 per 1000; 2 RCTs, 1597 participants; very low-certainty evidence). It probably reduces admission to hospital or death within 28 days (RR 0.49, 95% CI 0.31 to 0.75; 36 per 1000; 2 RCTs, 1595 participants; moderate-certainty evidence). Convalescent plasma may have little to no effect on initial symptom resolution at up to day 28 (RR 1.12, 95% CI 0.98 to 1.27; 1 RCT, 416 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. This is a living systematic review. We search monthly for new evidence and update the review when we identify relevant new evidence. AUTHORS' CONCLUSIONS: For the comparison of convalescent plasma versus placebo or standard care alone, our certainty in the evidence that convalescent plasma for individuals with moderate to severe disease does not reduce mortality and has little to no impact on clinical improvement or worsening is high. It probably has little to no effect on SAEs. For individuals with mild disease, we have low certainty evidence for our primary outcomes. There are 49 ongoing studies, and 33 studies reported as complete in a trials registry. Publication of ongoing studies might resolve some of the uncertainties around convalescent plasma therapy for people with asymptomatic or mild disease.


ANTECEDENTES: El plasma de convaleciente podría reducir la mortalidad en pacientes con enfermedades respiratorias víricas, y se está investigando como posible tratamiento para la enfermedad por coronavirus 2019 (covid­19). Se requiere un profundo conocimiento del conjunto de evidencia actual sobre los beneficios y riesgos de esta intervención. OBJETIVOS: Evaluar la efectividad y seguridad de la transfusión de plasma de convaleciente en el tratamiento de las personas con covid­19; y mantener la vigencia de la evidencia con un enfoque de revisión sistemática continua. MÉTODOS DE BÚSQUEDA: Para identificar estudios en curso y completados, se realizaron búsquedas en la base de datos COVID­19 de la OMS: literatura global sobre la enfermedad por coronavirus, MEDLINE, Embase, el Registro Cochrane de Estudios de covid­19 y la Plataforma COVID­19 L*OVE de Epistemonikos. Se realizaron búsquedas mensuales hasta el 3 de marzo de 2022. CRITERIOS DE SELECCIÓN: Se incluyeron ensayos controlados aleatorizados (ECA) que evaluaron el plasma de convaleciente para la covid­19, independientemente de la gravedad de la enfermedad, la edad, el sexo o el origen étnico. Se excluyeron los estudios que incluyeron poblaciones con otras enfermedades por coronavirus, como el síndrome respiratorio agudo grave (SARS) o el síndrome respiratorio de Oriente Medio (MERS), así como los estudios que evaluaron la inmunoglobulina estándar. OBTENCIÓN Y ANÁLISIS DE LOS DATOS: Se siguió la metodología estándar de Cochrane. Para evaluar el sesgo en los estudios incluidos se utilizó la herramienta RoB 2. Se utilizó el método GRADE para evaluar la certeza de la evidencia para los siguientes desenlaces: mortalidad por todas las causas hasta el día 28, empeoramiento y mejoría del estado clínico (para personas con enfermedad moderada a grave), ingreso hospitalario o muerte, resolución de los síntomas de covid­19 (para personas con enfermedad leve), calidad de vida, eventos adversos de grado 3 o 4 y eventos adversos graves. RESULTADOS PRINCIPALES: En esta cuarta versión actualizada de la revisión se incluyeron 33 ECA con 24 861 participantes, de los cuales 11 432 recibieron plasma de convaleciente. De ellos, 9 estudios son unicéntricos y 24 multicéntricos. Se realizaron 14 estudios en América, 8 en Europa, 3 en el Sudeste Asiático, 2 en África, 2 en el Pacífico occidental, 3 en el Mediterráneo oriental y 1 en varias regiones. Se identificaron otros 49 estudios en curso que evaluaron el plasma de convaleciente, y 33 estudios que informaban de que se habían completado. Personas con un diagnóstico confirmado de covid­19 y enfermedad de moderada a grave El uso de plasma de convaleciente se investigó en 29 ECA con 22 728 participantes con enfermedad moderada a grave. En 23 ECA con 22 020 participantes se comparó el plasma de convaleciente con el placebo o la atención habitual sola, en 5 se comparó con plasma estándar y en 1, con inmunoglobulina humana. Se evalúan subgrupos sobre detección de anticuerpos, aparición de síntomas, grupos de ingresos de países y varias comorbilidades en el texto completo. Plasma de convaleciente versus placebo o atención habitual sola El plasma de convaleciente no reduce la mortalidad por todas las causas hasta el día 28 (razón de riesgos [RR] 0,98; intervalo de confianza [IC] del 95%: 0,92 a 1,03; 220 por cada 1000; 21 ECA, 19 021 participantes; evidencia de certeza alta). Tiene poca o ninguna repercusión en la necesidad de ventilación mecánica invasiva o la muerte (RR 1,03; IC del 95%: 0,97 a 1,11; 296 por cada 1000; seis ECA, 14 477 participantes; evidencia de certeza alta) y no tiene ningún efecto en si los participantes reciben el alta hospitalaria (RR 1,00; IC de 95%: 0,97 a 1,02; 665 por cada 1000; seis ECA, 12 721 participantes; evidencia de certeza alta). El plasma de convaleciente podría tener poca o ninguna repercusión en la calidad de vida (DM 1,00; IC del 95%: ­2,14 a 4,14; un ECA, 483 participantes; evidencia de certeza baja). El plasma de convaleciente podría tener poco o ningún efecto en el riesgo de eventos adversos de grado 3 y 4 (RR 1,17; IC del 95%: 0,96 a 1,42; 212 por cada 1000; seis ECA, 2392 participantes; evidencia de certeza baja). Es probable que tenga poco o ningún efecto sobre el riesgo de eventos adversos graves (RR 1,14; IC del 95%: 0,91 a 1,44; 135 por cada 1000; seis ECA, 3901 participantes; evidencia de certeza moderada). Plasma de convaleciente versus plasma estándar No se sabe si el plasma de convaleciente reduce o aumenta la mortalidad por cualquier causa hasta el día 28 (RR 0,73; IC del 95%: 0,45 a 1,19; 129 por cada 1000; cuatro ECA, 484 participantes; evidencia de certeza muy baja). No se sabe si el plasma de convaleciente reduce o aumenta la necesidad de ventilación mecánica invasiva o la muerte (RR 5,59; IC del 95%: 0,29 a 108,38; 311 por cada 1000; un estudio, 34 participantes; evidencia de certeza muy baja) ni si reduce o aumenta el riesgo de eventos adversos graves (RR 0,80; IC 95%: 0,55 a 1,15; 236 por cada 1000; tres ECA, 327 participantes; evidencia de certeza muy baja). No se identificó ningún estudio que informara sobre otros desenlaces clave. Plasma de convaleciente versus inmunoglobulina humana El plasma de convaleciente podría tener poco o ningún efecto sobre la mortalidad por cualquier causa hasta el día 28 (RR 1,07; IC del 95%: 0,76 a 1,50; 464 por cada 1000; un estudio, 190 participantes; evidencia de certeza baja). No se identificó ningún estudio que informara sobre otros desenlaces clave. Personas con un diagnóstico confirmado de infección por SARS­CoV­2 y enfermedad leve Se identificaron dos ECA, con 536 participantes, que compararon el plasma de convaleciente con placebo o atención habitual sola y dos ECA, con 1597 participantes con enfermedad leve, que compararon el plasma de convaleciente con plasma estándar. Plasma de convaleciente versus placebo o atención habitual sola No se sabe si el plasma de convaleciente reduce la mortalidad por cualquier causa hasta el día 28 (odds ratio [OR] 0,36; IC del 95%: 0,09 a 1,46; 8 por cada 1000; dos ECA, 536 participantes; evidencia de certeza muy baja). Podría tener poco o ningún efecto en el ingreso hospitalario o la muerte a los 28 días (RR 1,05; IC del 95%: 0,60 a 1,84; 117 por cada 1000; un ECA, 376 participantes; evidencia de certeza baja), en el tiempo hasta la resolución de los síntomas de covid­19 (cociente de riesgos instantáneos [CRI] 1,05; IC del 95%: 0,85 a 1,30; 483 por cada 1000; un ECA, 376 participantes; evidencia de certeza baja), en el riesgo de eventos adversos de grados 3 y 4 (RR 1,29; IC del 95%: 0,75 a 2,19; 144 por cada 1000; un ECA, 376 participantes; evidencia de certeza baja) y en el riesgo de eventos adversos graves (RR 1,14; IC del 95%: 0,66 a 1,94; 133 por cada 1000; un ECA, 376 participantes; evidencia de certeza baja). No se identificó ningún estudio que informara sobre otros desenlaces clave. Plasma de convaleciente versus plasma estándar No se sabe si el plasma de convaleciente reduce la mortalidad por cualquier causa hasta el día 28 (OR 0,30; IC del 95%: 0,05 a 1,75; 2 por cada 1000; dos ECA, 1597 participantes; evidencia de certeza muy baja). Es probable que reduzca el ingreso hospitalario o la muerte a los 28 días (RR 0,49; IC del 95%: 0,31 a 0,75; 36 por cada 1000; dos ECA, 1595 participantes; evidencia de certeza moderada). El plasma de convaleciente podría tener poco o ningún efecto sobre la resolución inicial de los síntomas hasta el día 28 (RR 1,12; IC del 95%: 0,98 a 1,27; un ECA, 416 participantes; evidencia de certeza baja). No se identificó ningún estudio que informara sobre otros desenlaces clave. Esta es una revisión sistemática continua. Cada mes se busca nueva evidencia y se actualiza la revisión cuando se identifica evidencia nueva relevante. CONCLUSIONES DE LOS AUTORES: Para la comparación del plasma de convaleciente versus placebo o la atención habitual sola, existe evidencia de certeza alta de que el plasma de convaleciente para personas con enfermedad moderada a grave no reduce la mortalidad y tiene poco o ningún efecto en la mejoría o el empeoramiento clínico. Es probable que tenga poco o ningún efecto en los eventos adversos graves. Para las personas con enfermedad leve, existe evidencia de certeza baja para los desenlaces principales. Hay 49 estudios en curso y 33 estudios que declaran estar completados en un registro de ensayos. La publicación de los estudios en curso podría resolver algunas de las incertidumbres en torno al tratamiento con plasma de convaleciente para personas con enfermedad asintomática o leve.


Asunto(s)
COVID-19 , Virosis , Humanos , COVID-19/terapia , Sueroterapia para COVID-19 , Inmunoglobulinas , SARS-CoV-2
9.
Clin Infect Dis ; 76(11): 2018-2024, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-36740590

RESUMEN

Coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) is a safe and effective treatment for COVID-19 in immunocompromised (IC) patients. IC patients have a higher risk of persistent infection, severe disease, and death from COVID-19. Despite the continued clinical use of CCP to treat IC patients, the optimal dose, frequency/schedule, and duration of CCP treatment has yet to be determined, and related best practices guidelines are lacking. A group of individuals with expertise spanning infectious diseases, virology and transfusion medicine was assembled to render an expert opinion statement pertaining to the use of CCP for IC patients. For optimal effect, CCP should be recently and locally collected to match circulating variant. CCP should be considered for the treatment of IC patients with acute and protracted COVID-19; dosage depends on clinical setting (acute vs protracted COVID-19). CCP containing high-titer severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies, retains activity against circulating SARS-CoV-2 variants, which have otherwise rendered monoclonal antibodies ineffective.


Asunto(s)
COVID-19 , Humanos , COVID-19/terapia , SARS-CoV-2 , Sueroterapia para COVID-19 , Huésped Inmunocomprometido , Inmunización Pasiva , Anticuerpos Antivirales/uso terapéutico
10.
Cochrane Database Syst Rev ; 1: CD015167, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36700518

RESUMEN

BACKGROUND: Hyperimmune immunoglobulin (hIVIG) contains polyclonal antibodies, which can be prepared from large amounts of pooled convalescent plasma or prepared from animal sources through immunisation. They are being investigated as a potential therapy for coronavirus disease 2019 (COVID-19). This review was previously part of a parent review addressing convalescent plasma and hIVIG for people with COVID-19 and was split to address hIVIG and convalescent plasma separately. OBJECTIVES: To assess the benefits and harms of hIVIG therapy for the treatment of people with COVID-19, and to maintain the currency of the evidence using a living systematic review approach. SEARCH METHODS: To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Research Database, the Cochrane COVID-19 Study Register, the Epistemonikos COVID-19 L*OVE Platform and Medline and Embase from 1 January 2019 onwards. We carried out searches on 31 March 2022. SELECTION CRITERIA: We included randomised controlled trials (RCTs) that evaluated hIVIG for COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies that evaluated standard immunoglobulin. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. To assess bias in included studies, we used RoB 2. We rated the certainty of evidence, using the GRADE approach, for the following outcomes: all-cause mortality, improvement and worsening of clinical status (for individuals with moderate to severe disease), quality of life, adverse events, and serious adverse events. MAIN RESULTS: We included five RCTs with 947 participants, of whom 688 received hIVIG prepared from humans, 18 received heterologous swine glyco-humanised polyclonal antibody, and 241 received equine-derived processed and purified F(ab')2 fragments. All participants were hospitalised with moderate-to-severe disease, most participants were not vaccinated (only 12 participants were vaccinated). The studies were conducted before or during the emergence of several SARS-CoV-2 variants of concern. There are no data for people with COVID-19 with no symptoms (asymptomatic) or people with mild COVID-19. We identified a further 10 ongoing studies evaluating hIVIG. Benefits of hIVIG prepared from humans We included data on one RCT (579 participants) that assessed the benefits and harms of hIVIG 0.4 g/kg compared to saline placebo. hIVIG may have little to no impact on all-cause mortality at 28 days (risk ratio (RR) 0.79, 95% confidence interval (CI) 0.43 to 1.44; absolute effect 77 per 1000 with placebo versus 61 per 1000 (33 to 111) with hIVIG; low-certainty evidence). The evidence is very uncertain about the effect on worsening of clinical status at day 7 (RR 0.85, 95% CI 0.58 to 1.23; very low-certainty evidence). It probably has little to no impact on improvement of clinical status on day 28 (RR 1.02, 95% CI 0.97 to 1.08; moderate-certainty evidence). We did not identify any studies that reported quality-of-life outcomes, so we do not know if hIVIG has any impact on quality of life. Harms of hIVIG prepared from humans hIVIG may have little to no impact on adverse events at any grade on day 1 (RR 0.98, 95% CI 0.81 to 1.18; 431 per 1000; 1 study 579 participants; low-certainty evidence). Patients receiving hIVIG probably experience more adverse events at grade 3-4 severity than patients who receive placebo (RR 4.09, 95% CI 1.39 to 12.01; moderate-certainty evidence). hIVIG may have little to no impact on the composite outcome of serious adverse events or death up to day 28 (RR 0.72, 95% CI 0.45 to 1.14; moderate-certainty evidence). We also identified additional results on the benefits and harms of other dose ranges of hIVIG, not included in the summary of findings table, but summarised in additional tables. Benefits of animal-derived polyclonal antibodies We included data on one RCT (241 participants) to assess the benefits and harms of receptor-binding domain-specific polyclonal F(ab´)2 fragments of equine antibodies (EpAbs) compared to saline placebo. EpAbs may reduce all-cause mortality at 28 days (RR 0.60, 95% CI 0.26 to 1.37; absolute effect 114 per 1000 with placebo versus 68 per 1000 (30 to 156) ; low-certainty evidence). EpAbs may reduce worsening of clinical status up to day 28 (RR 0.67, 95% CI 0.38 to 1.18; absolute effect 203 per 1000 with placebo versus 136 per 1000 (77 to 240); low-certainty evidence). It may have some effect on improvement of clinical status on day 28 (RR 1.06, 95% CI 0.96 to 1.17; low-certainty evidence). We did not identify any studies that reported quality-of-life outcomes, so we do not know if EpAbs have any impact on quality of life. Harms of animal-derived polyclonal antibodies EpAbs may have little to no impact on the number of adverse events at any grade up to 28 days (RR 0.99, 95% CI 0.74 to 1.31; low-certainty evidence). Adverse events at grade 3-4 severity were not reported. Individuals receiving EpAbs may experience fewer serious adverse events than patients receiving placebo (RR 0.67, 95% CI 0.38 to 1.19; low-certainty evidence). We also identified additional results on the benefits and harms of other animal-derived polyclonal antibody doses, not included in the summary of findings table, but summarised in additional tables. AUTHORS' CONCLUSIONS: We included data from five RCTs that evaluated hIVIG compared to standard therapy, with participants with moderate-to-severe disease. As the studies evaluated different preparations (from humans or from various animals) and doses, we could not pool them. hIVIG prepared from humans may have little to no impact on mortality, and clinical improvement and worsening. hIVIG may increase grade 3-4 adverse events. Studies did not evaluate quality of life. RBD-specific polyclonal F(ab´)2 fragments of equine antibodies may reduce mortality and serious adverse events, and may reduce clinical worsening. However, the studies were conducted before or during the emergence of several SARS-CoV-2 variants of concern and prior to widespread vaccine rollout. As no studies evaluated hIVIG for participants with asymptomatic infection or mild disease, benefits for these individuals remains uncertain. This is a living systematic review. We search monthly for new evidence and update the review when we identify relevant new evidence.


Asunto(s)
Sueroterapia para COVID-19 , COVID-19 , Inmunoglobulinas , Humanos , COVID-19/terapia , COVID-19/virología , Inmunoglobulinas/uso terapéutico , SARS-CoV-2/genética , Ensayos Clínicos Controlados Aleatorios como Asunto
12.
Vox Sang ; 117(12): 1375-1383, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36349461

RESUMEN

BACKGROUND AND OBJECTIVES: Enabling universal access to safe blood components should be a key component of every country's national healthcare strategy. This study aimed to assess the current status of infrastructure and resources of blood transfusion services (BTS) in low- and middle-income countries. MATERIALS AND METHODS: A cross-sectional survey was designed to gather information on blood donations, components, redistribution, testing resources and quality management systems (QMSs). The survey was distributed to the International Society of Blood Transfusion members between October 2021 and November 2021. RESULTS: A total of 54 respondents from 20 countries responded to the survey. This included hospital-based BTS/blood centres (46%), national blood centres (11%)and national and regional blood services (11%). Voluntary non-remunerated, replacement and paid donors accounted for 94.2%, 84.6% and 21.1% of donations, respectively. Apheresis donation was available in 59.6% of institutions. National/regional criteria for redistribution of blood components were reported by 75.9% of respondents. Blood components incurred payment charges in 81.5% of respondents' institutions, and payments were borne by patients in 50% of them. Testing methods, such as manual (83%), semi-automated (68%) or fully automated (36.2%), were used either alone or in combination. QMSs were reported in 17 institutions, while accreditation and haemovigilance were reported in 12 and 8 countries, respectively. CONCLUSION: QMS was implemented in most of the countries despite the common use of paid donations and the lack of advanced testing. Efforts to overcome persistent challenges and wider implementation of patient blood management programmes are required.


Asunto(s)
Eliminación de Componentes Sanguíneos , Donantes de Sangre , Humanos , Estudios Transversales , Transfusión Sanguínea , Seguridad de la Sangre
13.
Transfus Med ; 32(6): 499-504, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36169016

RESUMEN

OBJECTIVES: This survey aims to assess the scope of transfusion e-learning courses in blood establishments and transfusion services internationally. BACKGROUND: E-learning/online education is increasingly used in the education of medical professionals. There is limited published data on the use of e-learning for transfusion medicine. MATERIAL AND METHODS: An International survey was designed and distributed to all members of the International Society of Blood Transfusion to assess utilisation of e-learning in their institutions. Descriptive statistics were used to summarise the results. RESULTS: A total of 177 respondents participated, 68 of which had e-learning modules in their institutions. Approximately two-thirds of the courses were developed in-house (66%), and 63% are available to learners from outside the host institutions. In one-third of institutions, these courses were established during the COVID-19 pandemic, while 15% had used e-learning courses for more than 10 years. The courses target different audiences and topics ranging from blood donation to hemovigilance. The most common audiences were physicians (71%), laboratory scientists/technologists (69%) and transfusion practitioners (63%). Formal assessment of learning outcomes is used in 70% of the programs. CONCLUSIONS: The survey demonstrates the widespread use of e-learning courses in transfusion education, with a substantial proportion being developed during the COVID-19 pandemic.


Asunto(s)
COVID-19 , Instrucción por Computador , Educación a Distancia , Medicina Transfusional , Humanos , Educación a Distancia/métodos , Estudios Transversales , Pandemias
14.
Vox Sang ; 117(10): 1202-1210, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36102139

RESUMEN

BACKGROUND AND OBJECTIVES: The use of coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) in the treatment of patients with severe acute respiratory syndrome-2 infection has been controversial. Early administration of CCP before hospital admission offers a potential advantage. This manuscript summarizes current trials of early use of CCP and explores the feasibility of this approach in different countries. MATERIALS AND METHODS: A questionnaire was distributed to the International Society of Blood Transfusion (ISBT) CCP working group. We recorded respondents' input on existing trials on early/outpatient CCP and out-of-hospital (OOH)/home transfusion (HT) practices in their countries and feedback on challenges in initiating home CCP infusion programmes. In addition, details of existing trials registered on clinicaltrials.gov were summarized. RESULTS: A total of 31 country representatives participated. Early/OOH CCP transfusion studies were reported in the United States, the Netherlands, Spain and Brazil. There were a total of six published and five ongoing trials on the prophylactic and therapeutic early use of CCP. HT was practised in Australia, the UK, Belgium, France, Japan, Nigeria, the Netherlands, Spain, Italy, Norway, the United States and some provinces in Canada. Thirty-four representatives indicated a lack of OOH CCP or HT in their institutions and countries. Barriers to implementation of OOH/HT included existing legislation, lack of policies pertaining to outpatient transfusion, and associated logistical challenges, including lack of staffing and resources. CONCLUSION: Early administration of CCP remains a potential option in COVID-19 management in countries with existing OOH/HT programmes. Legislation and regulatory bodies should consider OOH/HT practice for transfusion in future pandemics.


Asunto(s)
COVID-19 , COVID-19/terapia , Estudios de Factibilidad , Hospitales , Humanos , Inmunización Pasiva/efectos adversos , SARS-CoV-2 , Sueroterapia para COVID-19
15.
Transfus Med Rev ; 36(3): 125-132, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35879213

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has highlighted the potential therapeutic value of early passive polyclonal immunotherapy using high-titer convalescent plasma (CCP). Human polyclonal hyperimmune immunoglobulin (HIG) has several advantages over CCP. Unlike CCP, HIG can provide standardized and controlled antibody content. It is also subjected to robust pathogen reduction rendering it virally safe and is purified by technologies demonstrated to preserve immunoglobulin neutralization capacity and Fc fragment integrity. This document provides an overview of current practices and guidance for the collection and testing of plasma rich in antibodies against Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2) and its industrial fractionation for the manufacture of quality-assured and safe HIG. Considerations are also given to the production of HIG preparations in low- and middle-income countries.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos , COVID-19/terapia , Humanos , Inmunización Pasiva , Pandemias , Sueroterapia para COVID-19
16.
Transfus Med ; 32(5): 410-421, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35751376

RESUMEN

OBJECTIVES: To explore the current and future demand of immunoglobulins globally and specifically for the Netherlands by assessing: (I) which specialties contribute to current demand, (II) new areas of medical need, (III) which transformational factors may impact demand and to what effect, by using a scenario approach. BACKGROUND: As immunoglobulin demand continues to increase globally, there is concern of increasing shortages and questions of whether and how future demand will continue based on medical need. METHODS/MATERIALS: In line with scenario principles, a scoping review of Pubmed, Web of Science, Embase and Cochrane and grey literature was conducted. Semi-structured interviews with subject matter experts were held. The results of the review and interviews were analysed for major themes. RESULTS: The scoping review resulted in 97 articles, 74 regarding clinical uses, and 23 regarding organisational and other themes. Fifteen clinical and non-clinical experts were interviewed. I) Neurology, immunology, and haematology were specialties that contribute most to current demand. II) Regarding potential new areas of medical need, the literature review resulted in more indications than the interviews, for example, post-renal transplants. III) Four groups of key transformational factors were found: factors that could increase immunoglobulin demand (e.g., EMA revisions), decrease demand (e.g., replacement products, Dutch Transfer Act 2021), factors that remain to be seen how it impacts demand (e.g., further evidence), and miscellaneous factors (e.g., supply-related). CONCLUSION: Having identified the specialties and relevant transformational factors that affect immunoglobulin demand, more research is needed on what clinical or organisational strategies would be effective in controlling demand in general for the Netherlands and abroad. Other blood establishments may also use a scenario approach to increase preparedness for future (un)expected developments.


Asunto(s)
Inmunoglobulinas , Predicción , Humanos , Países Bajos
17.
Cochrane Database Syst Rev ; 6: CD014945, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35713300

RESUMEN

BACKGROUND: Monoclonal antibodies (mAbs) are laboratory-produced molecules derived from the B cells of an infected host. They are being investigated as potential prophylaxis to prevent coronavirus disease 2019 (COVID-19). OBJECTIVES: To assess the effects of SARS-CoV-2-neutralising mAbs, including mAb fragments, to prevent infection with SARS-CoV-2 causing COVID-19; and to maintain the currency of the evidence, using a living systematic review approach. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register, MEDLINE, Embase, and three other databases on 27 April 2022. We checked references, searched citations, and contacted study authors to identify additional studies. SELECTION CRITERIA: We included randomised controlled trials (RCTs) that evaluated SARS-CoV-2-neutralising mAbs, including mAb fragments, alone or combined, versus an active comparator, placebo, or no intervention, for pre-exposure prophylaxis (PrEP) and postexposure prophylaxis (PEP) of COVID-19. We excluded studies of SARS-CoV-2-neutralising mAbs to treat COVID-19, as these are part of another review. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed search results, extracted data, and assessed risk of bias using Cochrane RoB 2. Prioritised outcomes were infection with SARS-CoV-2, development of clinical COVID-19 symptoms, all-cause mortality, admission to hospital, quality of life, adverse events (AEs), and serious adverse events (SAEs). We rated the certainty of evidence using GRADE. MAIN RESULTS: We included four RCTs of 9749 participants who were previously uninfected and unvaccinated at baseline. Median age was 42 to 76 years. Around 20% to 77.5% of participants in the PrEP studies and 35% to 100% in the PEP studies had at least one risk factor for severe COVID-19. At baseline, 72.8% to 82.2% were SARS-CoV-2 antibody seronegative. We identified four ongoing studies, and two studies awaiting classification. Pre-exposure prophylaxis Tixagevimab/cilgavimab versus placebo One study evaluated tixagevimab/cilgavimab versus placebo in participants exposed to SARS-CoV-2 wild-type, Alpha, Beta, and Delta variant. About 39.3% of participants were censored for efficacy due to unblinding and 13.8% due to vaccination. Within six months, tixagevimab/cilgavimab probably decreases infection with SARS-CoV-2 (risk ratio (RR) 0.45, 95% confidence interval (CI) 0.29 to 0.70; 4685 participants; moderate-certainty evidence), decreases development of clinical COVID-19 symptoms (RR 0.18, 95% CI 0.09 to 0.35; 5172 participants; high-certainty evidence), and may decrease admission to hospital (RR 0.03, 95% CI 0 to 0.59; 5197 participants; low-certainty evidence). Tixagevimab/cilgavimab may result in little to no difference on mortality within six months, all-grade AEs, and SAEs (low-certainty evidence). Quality of life was not reported. Casirivimab/imdevimab versus placebo One study evaluated casirivimab/imdevimab versus placebo in participants who may have been exposed to SARS-CoV-2 wild-type, Alpha, and Delta variant. About 36.5% of participants opted for SARS-CoV-2 vaccination and had a mean of 66.1 days between last dose of intervention and vaccination. Within six months, casirivimab/imdevimab may decrease infection with SARS-CoV-2 (RR 0.01, 95% CI 0 to 0.14; 825 seronegative participants; low-certainty evidence) and may decrease development of clinical COVID-19 symptoms (RR 0.02, 95% CI 0 to 0.27; 969 participants; low-certainty evidence). We are uncertain whether casirivimab/imdevimab affects mortality regardless of the SARS-CoV-2 antibody serostatus. Casirivimab/imdevimab may increase all-grade AEs slightly (RR 1.14, 95% CI 0.98 to 1.31; 969 participants; low-certainty evidence). The evidence is very uncertain about the effects on grade 3 to 4 AEs and SAEs within six months. Admission to hospital and quality of life were not reported. Postexposure prophylaxis Bamlanivimab versus placebo One study evaluated bamlanivimab versus placebo in participants who may have been exposed to SARS-CoV-2 wild-type. Bamlanivimab probably decreases infection with SARS-CoV-2 versus placebo by day 29 (RR 0.76, 95% CI 0.59 to 0.98; 966 participants; moderate-certainty evidence), may result in little to no difference on all-cause mortality by day 60 (R 0.83, 95% CI 0.25 to 2.70; 966 participants; low-certainty evidence), may increase all-grade AEs by week eight (RR 1.12, 95% CI 0.86 to 1.46; 966 participants; low-certainty evidence), and may increase slightly SAEs (RR 1.46, 95% CI 0.73 to 2.91; 966 participants; low-certainty evidence). Development of clinical COVID-19 symptoms, admission to hospital within 30 days, and quality of life were not reported. Casirivimab/imdevimab versus placebo One study evaluated casirivimab/imdevimab versus placebo in participants who may have been exposed to SARS-CoV-2 wild-type, Alpha, and potentially, but less likely to Delta variant. Within 30 days, casirivimab/imdevimab decreases infection with SARS-CoV-2 (RR 0.34, 95% CI 0.23 to 0.48; 1505 participants; high-certainty evidence), development of clinical COVID-19 symptoms (broad-term definition) (RR 0.19, 95% CI 0.10 to 0.35; 1505 participants; high-certainty evidence), may result in little to no difference on mortality (RR 3.00, 95% CI 0.12 to 73.43; 1505 participants; low-certainty evidence), and may result in little to no difference in admission to hospital. Casirivimab/imdevimab may slightly decrease grade 3 to 4 AEs (RR 0.50, 95% CI 0.24 to 1.02; 2617 participants; low-certainty evidence), decreases all-grade AEs (RR 0.70, 95% CI 0.61 to 0.80; 2617 participants; high-certainty evidence), and may result in little to no difference on SAEs in participants regardless of SARS-CoV-2 antibody serostatus. Quality of life was not reported. AUTHORS' CONCLUSIONS: For PrEP, there is a decrease in development of clinical COVID-19 symptoms (high certainty), infection with SARS-CoV-2 (moderate certainty), and admission to hospital (low certainty) with tixagevimab/cilgavimab. There is low certainty of a decrease in infection with SARS-CoV-2, and development of clinical COVID-19 symptoms; and a higher rate for all-grade AEs with casirivimab/imdevimab. For PEP, there is moderate certainty of a decrease in infection with SARS-CoV-2 and low certainty for a higher rate for all-grade AEs with bamlanivimab. There is high certainty of a decrease in infection with SARS-CoV-2, development of clinical COVID-19 symptoms, and a higher rate for all-grade AEs with casirivimab/imdevimab.   Although there is high-to-moderate certainty evidence for some outcomes, it is insufficient to draw meaningful conclusions. These findings only apply to people unvaccinated against COVID-19. They are only applicable to the variants prevailing during the study and not other variants (e.g. Omicron). In vitro, tixagevimab/cilgavimab is effective against Omicron, but there are no clinical data. Bamlanivimab and casirivimab/imdevimab are ineffective against Omicron in vitro. Further studies are needed and publication of four ongoing studies may resolve the uncertainties.


Asunto(s)
Antineoplásicos Inmunológicos , COVID-19 , Adulto , Anciano , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales Humanizados , Anticuerpos Neutralizantes , COVID-19/prevención & control , Humanos , Persona de Mediana Edad , SARS-CoV-2
18.
Vox Sang ; 117(6): 822-830, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35262978

RESUMEN

BACKGROUND AND OBJECTIVES: The coronavirus disease 2019 (COVID-19) pandemic has impacted blood systems worldwide. Challenges included maintaining blood supplies and initiating the collection and use of COVID-19 convalescent plasma (CCP). Sharing information on the challenges can help improve blood collection and utilization. MATERIALS AND METHODS: A survey questionnaire was distributed to International Society of Blood Transfusion members in 95 countries. We recorded respondents' demographic information, impacts on the blood supply, CCP collection and use, transfusion demands and operational challenges. RESULTS: Eighty-two responses from 42 countries, including 24 low- and middle-income countries, were analysed. Participants worked in national (26.8%) and regional (26.8%) blood establishments and hospital-based (42.7%) institutions. CCP collection and transfusion were reported by 63% and 36.6% of respondents, respectively. Decreases in blood donations occurred in 70.6% of collecting facilities. Despite safety measures and recruitment strategies, donor fear and refusal of institutions to host blood drives were major contributing factors. Almost half of respondents working at transfusion medicine services were from large hospitals with over 10,000 red cell transfusions per year, and 76.8% of those hospitals experienced blood shortages. Practices varied in accepting donors for blood or CCP donations after a history of COVID-19 infection, CCP transfusion, or vaccination. Operational challenges included loss of staff, increased workloads and delays in reagent supplies. Almost half of the institutions modified their disaster plans during the pandemic. CONCLUSION: The challenges faced by blood systems during the COVID-19 pandemic highlight the need for guidance, harmonization, and strengthening of the preparedness and the capacity of blood systems against future infectious threats.


Asunto(s)
COVID-19 , Pandemias , Bancos de Sangre , Donantes de Sangre , Transfusión Sanguínea , COVID-19/epidemiología , COVID-19/terapia , Humanos , Inmunización Pasiva , Encuestas y Cuestionarios , Sueroterapia para COVID-19
19.
Hemasphere ; 6(2): e670, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35098039

RESUMEN

In 2016, the European Hematology Association (EHA) published the EHA Roadmap for European Hematology Research 1 aiming to highlight achievements in the diagnostics and treatment of blood disorders, and to better inform European policy makers and other stakeholders about the urgent clinical and scientific needs and priorities in the field of hematology. Each section was coordinated by 1-2 section editors who were leading international experts in the field. In the 5 years that have followed, advances in the field of hematology have been plentiful. As such, EHA is pleased to present an updated Research Roadmap, now including eleven sections, each of which will be published separately. The updated EHA Research Roadmap identifies the most urgent priorities in hematology research and clinical science, therefore supporting a more informed, focused, and ideally a more funded future for European hematology research. The 11 EHA Research Roadmap sections include Normal Hematopoiesis; Malignant Lymphoid Diseases; Malignant Myeloid Diseases; Anemias and Related Diseases; Platelet Disorders; Blood Coagulation and Hemostatic Disorders; Transfusion Medicine; Infections in Hematology; Hematopoietic Stem Cell Transplantation; CAR-T and Other Cell-based Immune Therapies; and Gene Therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...